NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.1

Class 12th Mathematics Part II CBSE Solution - Exercise 7.1

Question 1.

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Function: \(\sin 2x\)

Answer:

Method: To find the anti derivative of a function by inspection

Steps:

  1. In this method we look for a function whose derivative is the given function. For Example: if we need to find anti derivative of \(x^2\), we know that derivative of \(x^3\) is \(3x^2\). Therefore, the variable terms comes out to be the same.
  2. After that balance out the coefficients of variables by dividing and multiplying suitable terms. From above example if we divide \(x^3\) by 3 we will get the answer as \(x^2\). Hence, we can say that anti derivative of \(x^2\) is \(x^3/3\).

Now, similarly,

We know that:

\(\frac{d}{dx}(\cos 2x) = -2 \sin 2x\)

\(\Rightarrow \sin 2x = -\frac{1}{2} \frac{d}{dx}(\cos 2x)\)
\(\Rightarrow \sin 2x = \frac{d}{dx}(-\frac{1}{2} \cos 2x)\)

Therefore, the anti-derivative of \(\sin 2x\) is \(-\frac{1}{2} \cos 2x\).

Question 2.

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Function: \(\cos 3x\)

Answer:

We know that:

\(\frac{d}{dx}(\sin 3x) = 3 \cos 3x\)

\(\Rightarrow \cos 3x = \frac{1}{3} \frac{d}{dx}(\sin 3x)\)
\(\Rightarrow \cos 3x = \frac{d}{dx}(\frac{1}{3} \sin 3x)\)

Therefore, the anti-derivative of \(\cos 3x\) is \(\frac{1}{3} \sin 3x\).

Question 3.

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Function: \(e^{2x}\)

Answer:

We know that:

\(\frac{d}{dx}(e^{2x}) = 2e^{2x}\)

\(\Rightarrow e^{2x} = \frac{1}{2} \frac{d}{dx}(e^{2x})\)
\(\Rightarrow e^{2x} = \frac{d}{dx}(\frac{1}{2} e^{2x})\)

Therefore, the anti-derivative of \(e^{2x}\) is \(\frac{1}{2} e^{2x}\).

Question 4.

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Function: \((ax + b)^2\)

Answer:

We know that:

\(\frac{d}{dx}(ax + b)^3 = 3a(ax + b)^2\)

\(\Rightarrow (ax + b)^2 = \frac{1}{3a} \frac{d}{dx}(ax + b)^3\)
\(\Rightarrow (ax + b)^2 = \frac{d}{dx}\left( \frac{1}{3a}(ax + b)^3 \right)\)

Therefore, the anti-derivative of \((ax + b)^2\) is \(\frac{1}{3a}(ax + b)^3\).

Question 5.

Find an anti-derivative (or integral) of the following functions by the method of inspection.

Function: \(\sin 2x - 4 e^{3x}\)

Answer:

We know that:

\(\frac{d}{dx}(\cos 2x) = -2 \sin 2x\)

\(\Rightarrow -\frac{1}{2} \frac{d}{dx}(\cos 2x) = \sin 2x\)
\(\Rightarrow \frac{d}{dx}\left(-\frac{1}{2} \cos 2x\right) = \sin 2x\)

Therefore, the anti-derivative of \(\sin 2x\) is \(-\frac{1}{2} \cos 2x\) ...(1)

Also,

\(\frac{d}{dx}(e^{3x}) = 3e^{3x}\)

\(\Rightarrow \frac{4}{3} \frac{d}{dx}(e^{3x}) = 4e^{3x}\)
\(\Rightarrow \frac{d}{dx}\left(\frac{4}{3} e^{3x}\right) = 4e^{3x}\)

Therefore, the anti-derivative of \(4e^{3x}\) is \(\frac{4}{3} e^{3x}\) ...(2)

From (1) and (2), we get,

\(\frac{d}{dx}\left(-\frac{1}{2} \cos 2x - \frac{4}{3} e^{3x}\right) = \sin 2x - 4e^{3x}\)

Therefore, the anti-derivative of \(\sin 2x - 4 e^{3x}\) is \(-\frac{1}{2} \cos 2x - \frac{4}{3} e^{3x}\).

Question 6.

Find the following integrals.

Integral: \(\int (4e^{3x} + 1) dx\)

Answer:

\(\int (4e^{3x} + 1) dx = 4 \int e^{3x} dx + \int 1 dx\)

\(= 4\left( \frac{e^{3x}}{3} \right) + x + C\)

\(= \frac{4}{3}e^{3x} + x + C\)

Question 7.

Find the following integrals.

Integral: \(\int x^2 (1 - \frac{1}{x^2}) dx\)

Answer:

\(\int x^2 (1 - \frac{1}{x^2}) dx\)

\(= \int (x^2 - 1) dx\)

\(= \int x^2 dx - \int 1 dx\)

\(= \frac{x^3}{3} - x + C\)

Question 8.

Find the following integrals.

Integral: \(\int (ax^2 + bx + c) dx\)

Answer:

\(\int (ax^2 + bx + c) dx\)

\(= a \int x^2 dx + b \int x dx + c \int 1 dx\)

\(= a\left( \frac{x^3}{3} \right) + b\left( \frac{x^2}{2} \right) + cx + C\)

\(= \frac{ax^3}{3} + \frac{bx^2}{2} + cx + C\)

Question 9.

Find the following integrals.

Integral: \(\int (2x^2 + e^x) dx\)

Answer:

\(\int (2x^2 + e^x) dx\)

\(= 2 \int x^2 dx + \int e^x dx\)

\(= 2\left( \frac{x^3}{3} \right) + e^x + C\)

\(= \frac{2x^3}{3} + e^x + C\)

Question 10.

Find the following integrals.

Integral: \(\int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx\)

Answer:

\(\int (\sqrt{x} - \frac{1}{\sqrt{x}})^2 dx\)

Expanding using \((a-b)^2 = a^2 + b^2 - 2ab\):

\(= \int \left( x + \frac{1}{x} - 2 \right) dx\)

\(= \int x dx + \int \frac{1}{x} dx - 2 \int 1 dx\)

Now we know that, \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\) and \(\int \frac{1}{x} dx = \log|x|\).

Therefore,

\(= \frac{x^2}{2} + \log|x| - 2x + C\)

Question 11.

Find the following integrals.

Integral: \(\int \frac{x^3 + 5x^2 - 4}{x^2} dx\)

Answer:

\(\int \frac{x^3 + 5x^2 - 4}{x^2} dx\)

Separating the terms we get,

\(= \int (x + 5 - 4x^{-2}) dx\)

Applying the formula, \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\)

\(= \int x dx + 5 \int 1 dx - 4 \int x^{-2} dx\)

\(= \frac{x^2}{2} + 5x - 4\left( \frac{x^{-1}}{-1} \right) + C\)

\(= \frac{x^2}{2} + 5x + \frac{4}{x} + C\)

Question 12.

Find the following integrals.

Integral: \(\int \frac{x^3 + 3x + 4}{\sqrt{x}} dx\)

Answer:

\(\int \frac{x^3 + 3x + 4}{\sqrt{x}} dx\)

Separating the terms we get,

\(= \int (x^{3 - \frac{1}{2}} + 3x^{1 - \frac{1}{2}} + 4x^{-\frac{1}{2}}) dx\)

\(= \int (x^{\frac{5}{2}} + 3x^{\frac{1}{2}} + 4x^{-\frac{1}{2}}) dx\)

Applying the formula, \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\)

\(= \frac{x^{7/2}}{7/2} + 3\frac{x^{3/2}}{3/2} + 4\frac{x^{1/2}}{1/2} + C\)

\(= \frac{2}{7}x^{\frac{7}{2}} + 2x^{\frac{3}{2}} + 8x^{\frac{1}{2}} + C\)

\(= \frac{2}{7}x^{\frac{7}{2}} + 2x^{\frac{3}{2}} + 8\sqrt{x} + C\)

Question 13.

Find the following integrals.

Integral: \(\int \frac{x^3 - x^2 + x - 1}{x - 1} dx\)

Answer:

\(\int \frac{x^3 - x^2 + x - 1}{x - 1} dx\)

Now the numerator can be factorized as,

\(x^3 - x^2 + x - 1 = x^2(x - 1) + 1(x - 1)\)

\(x^3 - x^2 + x - 1 = (x^2 + 1)(x - 1)\)

Now putting this in given integral we get,

\(\int \frac{(x^2 + 1)(x - 1)}{x - 1} dx\)

\(= \int (x^2 + 1) dx\)

\(= \int x^2 dx + \int 1 dx\)

\(= \frac{x^3}{3} + x + C\)

Question 14.

Find the following integrals.

Integral: \(\int (1 - x)\sqrt{x} dx\)

Answer:

\(\int (1 - x)\sqrt{x} dx\)

\(= \int (\sqrt{x} - x\sqrt{x}) dx\)

\(= \int (x^{\frac{1}{2}} - x^{\frac{3}{2}}) dx\)

\(= \int x^{\frac{1}{2}} dx - \int x^{\frac{3}{2}} dx\)

\(= \frac{x^{3/2}}{3/2} - \frac{x^{5/2}}{5/2} + C\)

\(= \frac{2}{3}x^{\frac{3}{2}} - \frac{2}{5}x^{\frac{5}{2}} + C\)

Question 15.

Find the following integrals.

Integral: \(\int \sqrt{x} (3x^2 + 2x + 3) dx\)

Answer:

\(\int \sqrt{x} (3x^2 + 2x + 3) dx\)

\(= \int (3x^{\frac{5}{2}} + 2x^{\frac{3}{2}} + 3x^{\frac{1}{2}}) dx\)

\(= 3 \int x^{\frac{5}{2}} dx + 2 \int x^{\frac{3}{2}} dx + 3 \int x^{\frac{1}{2}} dx\)

\(= 3\left( \frac{2}{7}x^{\frac{7}{2}} \right) + 2\left( \frac{2}{5}x^{\frac{5}{2}} \right) + 3\left( \frac{2}{3}x^{\frac{3}{2}} \right) + C\)

\(= \frac{6}{7}x^{\frac{7}{2}} + \frac{4}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}} + C\)

Question 16.

Find the following integrals.

Integral: \(\int (2x - 3\cos x + e^x) dx\)

Answer:

\(\int (2x - 3\cos x + e^x) dx\)

\(= 2 \int x dx - 3 \int \cos x dx + \int e^x dx\)

\(= \frac{2x^2}{2} - 3(\sin x) + e^x + C\)

\(= x^2 - 3\sin x + e^x + C\)

Question 17.

Find the following integrals.

Integral: \(\int (2x^2 - 3\sin x + 5\sqrt{x}) dx\)

Answer:

\(\int (2x^2 - 3\sin x + 5\sqrt{x}) dx\)

\(= 2 \int x^2 dx - 3 \int \sin x dx + 5 \int x^{\frac{1}{2}} dx\)

\(= 2\left( \frac{x^3}{3} \right) - 3(-\cos x) + 5\left( \frac{2}{3}x^{\frac{3}{2}} \right) + C\)

\(= \frac{2x^3}{3} + 3\cos x + \frac{10}{3}x^{\frac{3}{2}} + C\)

Question 18.

Find the following integrals.

Integral: \(\int \sec x (\sec x + \tan x) dx\)

Answer:

Formulas Used: \(\int \sec^2 x dx = \tan x + C\) and \(\int \sec x \tan x dx = \sec x + C\)

\(\int \sec x (\sec x + \tan x) dx\)

Opening the brackets we get,

\(= \int (\sec^2 x + \sec x \tan x) dx\)

\(= \int \sec^2 x dx + \int \sec x \tan x dx\)

\(= \tan x + \sec x + C\)

Question 19.

Find the following integrals.

Integral: \(\int \frac{\sec^2 x}{\csc^2 x} dx\)

Answer:

\(\int \frac{\sec^2 x}{\csc^2 x} dx\)

\(= \int \frac{1/\cos^2 x}{1/\sin^2 x} dx\)

\(= \int \frac{\sin^2 x}{\cos^2 x} dx\)

\(= \int \tan^2 x dx\)

We know that \(\tan^2 x = \sec^2 x - 1\)

\(= \int (\sec^2 x - 1) dx\)

\(= \int \sec^2 x dx - \int 1 dx\)

\(= \tan x - x + C\)

Question 20.

Find the following integrals.

Integral: \(\int \frac{2 - 3\sin x}{\cos^2 x} dx\)

Answer:

\(\int \frac{2 - 3\sin x}{\cos^2 x} dx\)

\(= \int \left( \frac{2}{\cos^2 x} - \frac{3\sin x}{\cos^2 x} \right) dx\)

\(= \int (2\sec^2 x - 3\tan x \sec x) dx\)

\(= 2 \int \sec^2 x dx - 3 \int \tan x \sec x dx\)

\(= 2\tan x - 3\sec x + C\)

Question 21.

The anti-derivative of \((\sqrt{x} + 1/\sqrt{x})\) equals

A. \(\frac{1}{3} x^{1/3} + 2x^{1/2} + C\)
B. \(\frac{2}{3} x^{2/3} + \frac{1}{2} x^2 + C\)
C. \(\frac{2}{3} x^{3/2} + 2x^{1/2} + C\)
D. \(\frac{3}{2} x^{3/2} + \frac{1}{2} x^{1/2} + C\)

Answer:

\(\int (\sqrt{x} + \frac{1}{\sqrt{x}}) dx\)

\(= \int x^{\frac{1}{2}} dx + \int x^{-\frac{1}{2}} dx\)

\(= \frac{x^{3/2}}{3/2} + \frac{x^{1/2}}{1/2} + C\)

\(= \frac{2}{3}x^{\frac{3}{2}} + 2x^{\frac{1}{2}} + C\)

The correct option is C
Question 22.

If \(\frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\) such that \(f(2) = 0\). Then \(f(x)\) is

A. \(x^4 + \frac{1}{x^3} - \frac{129}{8}\)
B. \(x^3 + \frac{1}{x^4} + \frac{129}{8}\)
C. \(x^4 + \frac{1}{x^3} + \frac{129}{8}\)
D. \(x^3 + \frac{1}{x^4} - \frac{129}{8}\)

Solution:

It is given that \(\frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4}\)

Integrating both sides:

\(f(x) = \int (4x^3 - \frac{3}{x^4}) dx\)

\(\Rightarrow f(x) = 4 \int x^3 dx - 3 \int x^{-4} dx\)

\(\Rightarrow f(x) = 4\left(\frac{x^4}{4}\right) - 3\left(\frac{x^{-3}}{-3}\right) + C\)

\(\Rightarrow f(x) = x^4 + \frac{1}{x^3} + C\)

Also, It is given that \(f(2) = 0\)

\(\Rightarrow f(2) = (2)^4 + \frac{1}{(2)^3} + C = 0\)

\(\Rightarrow 16 + \frac{1}{8} + C = 0\)

\(\Rightarrow C = - (16 + \frac{1}{8})\)

\(\Rightarrow C = \frac{-129}{8}\)

Therefore,

\(f(x) = x^4 + \frac{1}{x^3} - \frac{129}{8}\)

The correct option is (A).


Title: NCERT Solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.1

Labels: Class 12 Maths, Integrals, NCERT Solutions, CBSE

Permanent Link: class-12-maths-chapter-7-integrals-exercise-7-1-solution

Search Description: Step-by-step solutions for Class 12 Maths Exercise 7.1 Integrals. Detailed explanations, method of inspection, and anti-derivative calculations.